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MONITORING AN INPUT-OUTPUT MODEL FOR
PRODUCTION. I. THE CONTROL CHARTS

D. R. Jensen, Y. V. Hui and P. M. Ghare

Virginia Polytechnic Institute
and State University

0. Abstract. Shewhart type control charts are T!-TM for monitoring~A

an input-output model against changes in form, against changes in its co-

efficients, and against changes in process variability. When a process

is not in control due to changes in some coefficients, monitoring shifts

to a diagnostic mode to identify the altered coefficients and thus the

needed adjustments to production. Control limits from special aid tables

are used; these are considered along with the choice of design. Operating

characteristics of the charts are summarized under standard assumptions.
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1. Introduction. Shewhart control charts are used routinely in

monitoring the means and variances of quality characteristics in indus-

trial production. These charts are easily maintained and interpreted

and their operating characteristics are known. Other aspects of produc-

tion are important in addition to the outgoing quality, yet little has

been done towards monitoring them. This study deals specifically with

the conversion of resources into units of product and with efficient re-

source use.

Production processes often may be formulated as input-output models

of the type

y= 80 + 8 1 X1 + ... + 8X + (1.1)

where y is the quantity produced; e is a random error; {XI, ... 9XpI are

the levels of inputs such as the number of machine hours used (X1), the

quantity of raw materials converted (X2), and the number of man-hours of

labor required (X3); and {81, ... 8 p} are rates of conversion of input

to output such as machine productivity in units per hour (81) , materials

conversion in units of output per unit of raw materials used (82), and

labor productivity in units per man-hour (83). The variables {X1 .

X } frequently include levels of inputs and functions of these levels asP

in second-order response models.

In practice an input-output model often is established in a small-

scale pilot plant or in a regular production facility under careful scru-

tiny by process engineers. Such model may or may not apply after the

process has gone on line or has seen extensive use. Response surface

methodology and evolutionary operation are concerned with finding levels
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of the input variables to achieve the most efficient use of resources.

In order that operating conditions thus determined remain optimal, it is

presumed that both the form of the model and the values of its coefficients

remain stationary through time. Both, however, may change. The form of

the model may change to include variables earlier held constant or to re-

flect changes in the type of dependence on inputs; values of the coeffi-

cients may change due to wear in machines or declining worker morale, for

example. In practice it may be possible to adjust the process to its ori-

ginal state by replacing worn parts or by improving labor relations in the

examples cited. Or, if the model has changed irrevocably, it may be neces-

sary to establish revised operating conditions taking into account the

altered form.

The object here is to monitor a model against changes in form, against

changes in its coefficients, and against changes in process variability.

The study is arranged in two parts. Part I gives charts for monitoring

these changes, and it supplies the basic properties of these charts under

standard assumptions. Related topics as developed in Part II include (i)

properties of the charts when the usual assumptions fail, (ii) the notion

of drifting processes, and (ili) stochastic bounds for certain distribu-

tions under drifting. Special features are that different charts may be

maintained on different schedules as needed and, in monitoring the coeffi-

cients, that a diagnostic mode is available to aid in identifying the

altered coefficients. Various modifications of the basic procedures are

given to allow for flexibility in their use.

2. Preliminaries. Consider an expanded model of the type

P q
y a a + Z 8iX1 + Z yZ. + (2.1)

i-i.i Jl +
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where {XI, ... ,X } are variables appearing in the original model and

{Z1, ... Z q} are additional variables which may or may not be adjusted

in determining operating conditions. This model encompasses several ave-

nues as follows through which changes in the model (1.1) may occur.

One possibility is that {ZI , ... ,Z } are further functions of the

original input factors not included in {X1, ... ,X p}; then (2.1) repre-

sents a structural change in the dependence of output on inputs. For

example, (1.1) may be a second-order response function and (2.1) a func-

tion of third order. Operating conditions considered optimal often differ

widely between two such models.

A second possibility arises when {Z1, ... ,Zq I are functions only of

factors extraneous to the initial modeling in that they either were unknown

or essentially were held fixed. Examples are batch temperature, line vol-

tage, and the percent impurities of materials from a supplier, all of which

may fluctuate appreciably when a process goes on line. When {ZI, ... ,Z q

are held fixed the models (1.1) and (2.1) are related through the expres-

sion
q

a + Y (2.2)0~ yjzj

While the level of output now depends on the values of extraneous variables,

optimal levels of the original variables often do not under this version

of the model (2.1).

As a third possibility combining the other two, {Zl, ... ,Z } may be
q

determined by levels of the original input factors and the levels of fac-

tors extraneous to these. This allows for structural changes in the ori-

ginal model as well as dependence on extraneous variables. When some of
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{Zip ... Zq} are functions of the levels of both types of factors, opti-

mal levels of the original variables generally are altered even when

1  B } remain constant over time.

To monitor the model, observations {YI' " '"ynI are generated on each

sampling occasion at levels {X1, ... X aI specified according to a parti-

cular design, where Xi = [Xio0 Xil ... ,X ip and Xio = 1 for i = 1, 2,

n. in standard form the observational versions of (1.1) and (2.1) are

y = X6 + E (2.3)

and

y = Xa + Zy + E (2.4)

respectively, where y = [yl, ... y]'; X is a design matrix of order

[n(p+l)] and rank p+l; a - [$02 al ... ,p I' with 80 replacing a in ex-

pression (2.1); Z(nxq) is a matrix consisting of levels of the additional

variables, often unknown; y = [yI, ... ,' P; and E = [elf ... ten]' is a

vector of errors, all mutually uncorrelated and having the same variance
2
a . Here the primes denote transposition. Usually the same experimental

design is repeated on successive occasions, often with a single point repli-

cated to give the observations {y*, .... y*} having the sample mean y*. On

each sampling occasion we compute one or more of (i) the Gauss-Markov esti-

mates B = (XX) -X y under the model (1.1); (ii) the residual sum of squares

R($) - (y - XB)'(y - X); and (iii) the sample variance s2 = [(y - Y*)2 +

+(y - *) 2]/(m-l). The latter provides a reasonable estimate for o2
m

2
regardless of the underlying model. On occasion a is assumed to be known

or, if stationary over time, to have been estimated using the sample vari-
2

ance so from a start-up period based on v degrees of freedom.

0S
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The ensuing developments are based on the following standard assump-

tions.

i) Independent random outcomes are observed on successive sampling

occasions.

(ii) 'The errors {el, ... ,en I are distributed normally.

(iii) The control values {$*, 8, ".. ,8s*, a} for parameters of the

original model are known.

Accordingly, needed values from standard distributions are F (rv),

the 100(l-t) percentile of the central F distribution having r and v degrees

of freedom, and X 2v), the 100(1-a) percentile of the central chi-squared

distribution having v degrees of freedom. Other special values are

t C(p,v.,R), the upper percentile of the central p-dimensional Student's

distribution having v degrees of freedom and the correlation matrix R(pxp)

such that P(t, t (pvR), - t < t (p,v,R)) = l-a; and F (p,v,R), the

two-sided version such that P(t 2 < F (p,v,R), ... t2 < F (p,v,R)) = l-a.1- a- p -a

These distributions are discussed in reference [4], for example; special

aid tables are cited in a later section.

3. The Control Charts. To monitor a process samples are taken on

successive occasions and appropriate statistics are computed. A control

chart of Shewhart's type consists of successive values of a statistic

plotted against time as the horizontal scale. Alpha-level control limits

are provided beyond which the chart signals that the process is not in con-

trol, with a the probability of exceeding the limits on each occasion when

the process is in control. A typical chart with one-sided limit is depicted

in Figure la; a two-sided version is shown in Figure lb. In the sections

following we consider monitoring an input-output model against changes of

- --- ------
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FIGURE la. A typical Shewhart control chart with warning line Wac

upper control limit C, and values warning at time 6 and signaling

at time 7.
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FIGURE lb. A typical Shewhart control chart for plotting a statistic

e with target value e, lower (WL) and upper (Wu) warning lines, and

lower (CL) and upper (Cu) control limits.
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the types mentioned. In particular, for each type of change we stipul-

ate i) the statistics to be plotted, (ii) the control limits appropriate,

and (iii) the corrective action to be taken when a chart signals.

3.1 Monitoring the structure. The purpose is to monitor the model

(1.1) against changes of the form (2.1). The basic procedure uses an F

chart of the type shown in Figure la with an upper control limit.

THE CHART. Plot values of the statistic

2
F1 = R( )/(n-p-l)s 2

. (3.1)

THE CONTROL LIMIT. The chart signals a change in structure whenever

F1 > F (n-p-1, m-1). (3.2)

CORRECTIVE ACTION. Use residual analysis to identify changes in the form

of the model and to isolate extraneous variables now pertinent. Determine

whether these extraneous variables may be adjusted for efficiency. If

necessary revise the model and determine revised operating conditions.

2.
OPTIONAL PROCEDURES. If the process variance a is known the statistic

X 2 R()/a 2 may be plotted on a chi-squared chart similar to Figure la
2 2

with 2 (n-p-l) as the upper control ilimit. If a is stationary over time
but otherwise unknown, the statistic F1 = R(2)/(n-p-l)s0 may be plotted on

an F chart and F (n-p-l, v) used as a control limit, where s2 is an initial

estimate based on v degrees of freedom.

3.2 Monitoring the coefficients. The purpose is to monitor against

general alternatives changes in the coefficients of the model (1.1) from

their designated values * = [6*, a, ... ,*]'. The basic procedure uses
0 p h

an F chart as in Figure Ia.
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THE CHART. Plot values of the statistic

F2 = S(8,8*)/(P+l)s2  (3.3)

where S(aa*)

THE CONTROL LIMIT. The chart signals a change in some one or more coeffi-

cients whenever

F2 > F (p+l, m-l). (3.4)

CORRECTIVE ACTION. Monitoring shifts to the diagnostic mode of Section

3.3 in order to identify he altered coefficients and thus the specific

adjustments to be made to the process.

OPTIONAL PROCEDURES. Two types of options are considered.

2 2 = " 2(i) If a is known the statistic X2  S(Ba*)/a may be plotted on a

chi-squared chart and X2 (p+l) used as a control limit. If a2 is stationary
a2

over time, justifying use of an initial estimate s2 having v degrees of

2freedom, the statistic F2 = S(,a*)/(p+l)so may be plotted on an F chart

and F (p+l, v) used as a control limit.

(ii) Suppose some subset {Xi , ... ,X it} of the p variables {XI, ...

X } may be adjusted in determining efficient operating conditions, and letP

be the corresponding coefficients. Then it may be

desired to determine whether designated operating conditions for these vari-

ables remain optimal, i.e., whether the coefficients all achieve their

designated values ]'. This may be accomplished on plotting

the statistic F* - S(, *)/ts 2 on an F chart using F (t,m-l) as a control2a

limit, where now S(&,&*) - (E-c*)'M-( Q-C*) and M is the (txt) matrix obtained

from (XX)- on deleting rows and columns not in the set {il, ... it} and

rearranging those remaining in the order (i' ... %i )" In particular, when
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optimal conditions depend on the levels of {X1, ... ,X } but not on the

overall level of response, this gives a procedure for monitoring {8 ,.

S p} ignoring the value of 80.

3.3 The diagnostic mode. The purpose is to determine which coeffi-

cients have changed and thus the specific adjustments to be made to the

process such as repairing machines or improving worker productivity. The

basic procedure gives multipurpose use to a single control chart of the

type shown in Figure la; other options are noted. Write (X'X)- = M

[mi] with i and j ranging from 0 through p, and let R = [pHi be the cor-

relation matrix for 8, which is determined by the choice of design.

THE CHART. Using different symbols plot the several statistics

t2 = s2 0, 1, ... 9p (3.5)

on a single chart as in Figure la.

THE CONTROL LIMIT. The coefficient is declared significantly different

from its control value 8t whenever

t2 > F (p+l, m-1, R) (3.6)i

for each i = 0, 1, ... ,p.

CORRECTIVE ACTION. Adjustments of the appropriate types are initiated for

each coefficient found to differ significantly from its control value.

OPTIONAL PROCEDURES. Four options are considered.

(i) The estimate s may be replaced by a2 if known or by s2 from an

initial period if variance is stationary. The corresponding changes in the

control limit are to replace m-l in F (p+l, m-l, R) by c and v respectively

for the two cases.
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(ii) Separate charts may be maintained for the several coefficients

as in Figure lb. Here the target value is a* for the ith chart, and the

upper and lower control limits are given by ± [miis 2 F (p+l, m-l, R)] .

This has the advantages that Bi may be plotted on its natural scale rather

than the standardized scale of the single chart, and that trends above as

well as below the control value may be followed. The disadvantage is that

several charts are required.

(iii) Because the F chart of Section 3.2 monitors against general

alternatives, it is appropriate that the diagnostic mode be carried out

against two-sided alternatives. However, if one-sided alternatives are

mandated throughout, then monitoring as in Section 3.2 may be omitted in

favor of the following procedure. To monitor against one-sided upper al-

ternatives, use different symbols to plot the statistics

ti = ( - ; i = 0, 1, ... ,p (3.7)

on a single chart as in Figure la with t (p+l, m-l, R) as the upper control

limit. Alternatively, a separate chart may be maintained for each coeffi-

2
cient in which is plotted on its natural scale with at + (m s ) t (p+l,

I. ii Oa

m-l, R) as an upper control limit. Against one-sided lower alternatives the

foregoing procedures may be followed using -t (p+l, m-l, R) and at - (mis2

t (p+l, m-l, R) respectively as lower control limits.

(iv) The foregoing procedures including options all may be adapted

for monitoring a subset a = 11, ... ,SI' of the parameters against their
1 

t
control values E* The essential changes are to replace

1 t
p+l by t and M by the (txt) matrix obtained on deleting rows and columns of

(XX)-1 not in the set ill ... t and rearranging those remaining in the

order (ii, ... ,it



3.4 Monitoring the process variance. The purpose is to determine
2 .2

whether the process variance a is maintained at its control value a0.
2 2

Adjustment is initiated on evidence that a exceeds a o .

THE CHART. Plot the statistic

2 2 2
X3 = (m-l)s /a0  (3.8)

on a chi-squared chart of the type shown in Figure la.

THE CONTROL LIMIT. The variance of the process is inferred to be exces-

sive whenever

2 22 > X (ml) (3.9)

CORRECTIVE ACTION. Adjustments to reduce the process variability are under-

taken when the chart signals.
2.

OPTIONAL PROCEDURES. Often the control variance a is not assumed known,

but instead an estimate s2 based on v degrees of freedom is used from an

initial period when the process is known to be in control. Then the stat-

istic F3  s /s0 is plotted on an F chart as in Figure la with F (m-l, v)

as a control limit.

4. Special Aid Tables. Standard tables are widely available for use

with the F and chi-squared charts irrespective of the particular experi-

mental design. The same control limit applies on successive occasions as

long as n is held fixed, whether or not the designs are all identical.

Owing to an excess of parameters, tables of percentiles associated

with multidimensional Student's distributions are available only for the

equicorrelated case in which p j - p for all i j. A summary of these

sources is given in the accompanying Table 1 together with ranges for the



TABLE 1. Special aid tables related to p-dimensional Student's distribu-

tions having v degrees of freedom and the common correlation parameter p.

Percentiles Range of Values Reference

Tabulated a p v P

t (p,v,p) * 1(1)10 5(1)35 0(0.1)0.9 [5]

t (p,v,p) * * 1(1)10 5(1)35 0(0.1)0.9 [7]

F (p,v,0) 1(1)12 5(1)45 0 []

F (p,V,P) 1(1)10 5(1)35 0.1(0.1)0.9 [6]

a a = 0.01, 0.025, 0.05, 0.10 * * = 0.01, 0.05
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several parameters in question. Here t (p,v,p) and F (p,v,p) are upper
a a

percentiles of the equicorrelated distributions having the correlation para-

meter p; these correspond respectively to t (p,v,R) and F (p,v,R) in the gen-

eral case. In addition, tables of 1-a = P(tI < a, t2 < a) are given in ref-

erence [8], and values of 1-a = P(JtlJ < a, Jt2j < a) in reference [9], in

the bivariate case for the values a = 1.0(0.1)5.5, v = 5(1)35, and IPJ =

0(0.1)0.9. Tables of 1-a = P(Itll < a, ... It I <.a) are given in reference
p

[2) for a - 0.2(0.2)6.0; v = 4(2)12(4)24, 30, -; p = 2(2)20; and p = 0(0.1)0.9

and p - -1/(p-l), all based on Monte Carlo methods. Abbreviated tables of

tL(p,v,p) and F (P,V,P) appear in Tables 2 and 3 as taken from the sources

cited in Table 1. Values of t (p,v,0) and F (p,vO) assume a special role

for reasons to be given.

On occasion the design matrix X may be chosen arbitrarily. In order

that the same control limits apply in the diagnostic mode, it is necessary

that successive designs have the same correlation parameters. To expedite

the diagnostic mode it is recommended whenever possible that X be chosen

such that pij - p for all i # j, for then the special aid tables apply di-

rectly. For this it suffices that (X'X)- = D + paa' with D diagonal and

a chosen suitably or, equivalently, that (X'X) = D + yb' have the same

structure (cf. reference [3], page 170). In particular, an orthogonal de-

sign yields p j = 0 for all i 0 j, in which case tables of tC(p,v,0) and

F (p,v,0) are appropriate. Unfortunately, equicorrelated designs are not

possible in many cases such as second order response models. However, by

using appropriate probability inequalities the tabulated percentiles often

may be applied conservatively to more general correlation structures.

For one-sided Gaussian limits Slepian (1962) has shown that the prob-

ability PR(Z1 < a, ... ,Zp < a p) is an increasing function of each iJ'

p-73p



TABLE 2. Selected values of t (p,v,p) from reference r5].

p - 0 p - 0.4 p 0.8

vp 2 4 6 2 4 6 2 4 6

= 0.05

6 2.42 2.89 3.17 2.36 2.76 2.99 2.22 2.48 2.61

8 2.28 2.70 2.95 2.24 2.60 2.80 2.12 2.35 2.47

10 2.21 2.60 2.82 2.17 2.50 2.69 2.06 2.27 2.39

15 2.12 2.47 2.66 2.08 2.39 2.56 1.98 2.18 2.29

20 2.08 2.40 2.59 2.04 2.33 2.50 1.95 2.14 2.25

25 2.05 2.37 2.55 2.02 2.30 2.46 1.92 2.12 2.22

30 2.03 2.34 2.52 2.00 2.28 2.44 1.91 2.10 2.20

a= 0.01

6 3.68 4.25 4.59 3.63 4.12 4.40 3.48 3.80 3.97

8 3.34 3.80 4.07 3.30 3.71 3.94 3.19 3.45 3.60

10 3.16 3.56 3.79 3.13 3.49 3.69 3.03 3.27 3.40

15 2.94 3.28 3.47 2.92 3.22 3.40 2.83 3.05 3.16

20 2.84 3.14 3.32 2.82 3.10 3.26 2.75 2.94 3.05

25 2.78 3.07 3.24 2.77 3.03 3.18 2.70 2.89 2.99

30 2.75 3.02 3.18 2.73 2.99 3.14 2.66 2.85 2.95

1*



TABLE 3. Selected values of Fa(p,v,p) from references [1 and [6].

p = 0 p = 0.4 p =0.8

V p 4 6 2 4 6 2 4 6

a 0.05

6 8.50 11.48 13.43 8.31 10.95 12.61 7.56 9.16 10.09

8 7.39 9.78 11.32 7.24 9.37 10.70 6.63 7.95 8.71

10 6.81 8.90 10.24 6.68 8.55 9.72 6.15 7.33 8.00

15 6.12 7.87 8.96 6.02 7.60 8.56 5.58 6.59 7.17

20 5.81 7.41 8.40 5.72 7.17 8.05 5.32 6.26 6.80

25 5.64 7.14 8.07 5.55 6.93 7.76 5.17 6.07 6.58

30 5.52 6.98 7.87 5.44 6.77 7.57 5.07 5.95 6.45

- 0.01

6 18.24 23.58 27.07 17.94 22.70 25.72 16.67 19.63 21.35

8 14.51 18.26 20.68 14.31 17.70 19.82 13.44 15.61 16.87

10 12.72 15.75 17.68 12.57 15.33 17.05 11.87 13.69 14.73

15 10.75 13.02 14.44 10.65 12.75 14.04 10.14 11.57 12.39

20 9.92 11.87 13.08 9.83 11.67 12.78 9.40 10.67 11.39

25 9.45 11.25 12.35 9.38 11.07 12.09 8.99 10.17 10.85

30 9.16 10.85 11.89 9.10 10.70 11.66 8.73 9.86 10.50
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where Z = [Z, ... ,Z p]' is a p-dimensional standard Gaussian vector having

the correlation matrix R - [Pij]. Applying Slepian's result conditionally
2

on s and noting that inequalities are preserved on averaging over the con-

ditioning variable, we have the following useful result. Let p* = min{Pij;

i 0 J }; then the inequality

P(t1 <t(pv,p*), ... ,tp < ta(p,v,p*)) > i-a (4.1)

holds uniformly for all nonsingular correlation matrices R having p*ijimin{ij;i # ii, with equality when -i 
= p for all i j. Through this

mechanism special aid tables now available can be applied conservatively

for any design matrix X in the sense that the actual operating level is

no greater than a.

For two-sided limits a result of Sidfk (1967) applies directly to give

P(t2 < F (p, ,0) ... t2 < F (p,V,0)) > 1-a (4.2)

uniformly for every correlation matrix R, with equality when pij = 0 for

all i 0 j as in the case of orthogonal designs. Tables of F (p,v,0) as given

in reference [11 thus apply conservatively in the case of two-sided limits

for every choice of design.

5. Properties of the Charts. We examine performance characteristics

of the charts under standard assumptions as set forth in Section 2. The

run length of a chart is the number of successive samples taken before the

chart signals that the process is not in control. For many purposes the

operating characteristics of a chart may be summarized succinctly in terms

of the distribution of its run lengths. We follow this approach here.
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Consider first those F and chi-squared charts of the preceding sec-

2
tions not using so, and suppose the parameters monitored remain fixed through

time. Then by independence and the identical distributions of successive

statistics associated with each chart, it follows that its run-length dis-

tribution is geometric with parameter y equal to the probability of exceeding

the control limit on each occasion. A consequence is that each chart even-

tually signals with unit probability. Moreover, because for each chart the

normal-theory tests have power increasing monotonically with departures from

control, and because geometric distributions are stochastically decreasing

in the parameter y, it follows that the run lengths become stochastically

smaller, and thus each chart tends to signal more frequently, with increasing

departures from control.

Modifications to the basic charts were given using an estimate s from

an initial period. The resulting run-length distributions are complicated,

being no longer geometric owing to dependence among the successive statistics.

Moreover, even under independence the geometric property fails when the para-

meters monitored are not constant through time. Properties of the actual

run-length distributions resulting from failure of these and other assump-

tions are considered in detail in Part II of this study.

Similar assessments may be given for the diagnostic charts. Here it is

useful to define the run length as the number of sampling occasions in which

no chart signals and thus no diagnoses are rendered. For example, the run-

length distribution is geometric with parameter a when the process is in

control and exact tables are used. If instead approximate procedures are

used based on (4.1) or (4.2), then the actual run length is stochastically

larger than one having the geometric distribution with parameter a, which

thus provides a bound.

1. _ _ _
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6. An Application. Taraman and Lambert [12] reported a study on condi-

tions for machining steel in which the logarithm (y) of tool life in minutes

was regressed on coded variables xl, x2, and x3 representing logarithms of

cutting speed, rate of feed, and depth of cut, respectively. A partially

replicated central composite design was used. A second-order model of the

type

2 2 2
y - 0 + OlXl + 02 x2 + B3x3 + llXl+ 22 + + (6.1)

having only linear and quadratic terms in each variable was established pro-

visionally. We treat this data set as one from a succession of experiments

to be used for monitoring tool life in production. Taraman and Lambert [12]

used the shapes of this and two related response surfaces in determining

operating conditions. The shape of response thus is to be monitored in addi-

tion to adequacy of the model and its residual variance. As the shape of a

second-order response surface is determined apart from centering by its second-

order coefficients, we monitor the latter using one of the optional procedures

of Section 3.2.

The design is central composite, built around a single replication of a

23 factorial experiment with vertices at ±1 for the coded variables. The

center point was replicated four times, and two replications were made at

each of the coded values ±/2 on the three coordinate axes. Estimates for

parameters of the model (6.1) are given in Table 4 along with the values vii

from the diagonal of V - (X'X)"I. The analysis of variance is summarized
2

in Table 5, the pure error component giving the estimate s 2 0.009275 for
2
a having 9 degrees of freedom.

To monitor for changes in the structure of the model (6.1) we compute

the statistic F1 - 0.023171/0.009275 - 2.498 as in Section 3.1. The upper

control limit at the level a - 0.05 is F0.05 (8,9) - 3.23, supporting the con-

clusion that the form of the model is as specified.

L...,...h, ....



TABLE 4. Estimated coefficients for the model (6.1)

and values v} from the diagonal of V = (X'X)-

Parameter Estimate Vii

3.500933 0.208330

81 -0.303106 0.062501

82 -0.092222 0.062501

83 -0.091540 0.062501

811 0.048230 0.083335

822 0.041642 0.083335

833 0.068205 0.083335



TABLE 5. Analysis of variance of the data in reference [12].

Source Degrees of Sum of MeanFreedom Squares Square

Model 6 1.812867 0.302144

Lack of Fit 8 0.185366 0.023171

Error 9 0.083479 0.009275
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In order to monitor the shape coefficients, we suppose that their target

values from a base line period are C* = (Bi, 19B, 6a3)' - 0.13, 0.09, 0.03)'.

From the matrix (X'X)- I we extract the lower principal diagonal block of order

(3x3) to get

0.083335 0.020833 0.020833

M = 0.020833 0.083335 0.020833 (6.2)

L0.020833 0.020833 0.083335

using the notation of Section 3.2 under option (ii). On evaluating S(Q, *)

as the quadratic form

(*)'MI( - *) = 0.119455 (6.3)

2

we compute F* = S(E,.*)/3s2 = 4.293. As the upper control limit at the level

= 0.05 is F0. 05 (3,9) = 3.86, the chart signals a shift in one or more shape

coefficients from their target values. Monitoring now shifts to the diagnostic

mode of Section 3.3 to identify which coefficients may have changed.

Proceeding as in Section 3.3 we compute the Studentized statistics

2 2 2 2 )2/ 2 -322
tl O) /mlS = 8.651, t= ( 22 2 = 3.025, and t3 =

1 -1, 2 22 228 22 00 3.I
(33 3)/m 33s

2  1.888, where from (6.2) m 2 2 = 0.083335. It33 3 33 1 22 33

is clear from the form of M that (611. 622' 633) are equicorrelated having the

common correlation p = 0.25. The upper control limit required for the diagnostic

chart thus is F (p,v,p) in the notation of Section 4 with p = 3, v = 9 and

p - 0.25. Interpolating linearly between F0.05 (3,9,0.2) 
= 8.26 and F0.05 (3,9,0.3) =

8.18 using the tables in [6], we obtain the required critical value F0.05(3,9,0.25)-

8.22. As t2 exceeds this value and t2 and t2 do not, we infer that the second-

order coefficient for cutting speed is significantly smailler than its target value.

Thus either an adjustment to the process should be made, or operating conditions

should be modified to reflect the altered coefficient.
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If the process variance is to be monitored against the control value

2 2 2 2
00 0.01, we find that X3  9s /a - 8.348. The upper control limit is

X2 (v) - 16.919 with a = 0.05 and v 9, indicating that the process variance

remains in control.
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